Europe’s X-ray Powerhouse Hit by Budget Cuts

first_imgThe difficult financial straits of European nations are starting to have an impact on the funding of the region’s large research facilities. The governing council of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France, agreed this week to requests from the United Kingdom and Italy to temporarily reduce their contributions to running the facility. ESRF management say that they will make savings by reducing the total amount of beamtime available, with the amount provided to researchers from the United Kingdom and Italy being reduced in proportion. ESRF is one of the world’s leading x-ray radiation facilities and serves 5000 scientists. Restrictions on the budgets of the U.K. research councils has put a squeeze on subscriptions to international facilities. Each of ESRF’s 19 member and associate countries shoulder a fixed share of the facility’s running cost. The United Kingdom contributes 14% and Italy 15%. The United Kingdom requested a reduction at this week’s council meeting, and it was agreed to reduce the U.K. contribution to 10% for the 3 years 2011 through 2013. During that time, proposals with a U.K. scientist as investigator or co-investigator will be limited to 10.32% of total beamtime on average. Overall, ESRF will have to deal with a 6% drop in income, which it will absorb by reducing the number of beamlines in operation or the amount of operation, plus it will slow its upgrade program. During the next 3 years, ESRF management will look to attract new members or associates and other forms of collaboration that will inject funds into the facility. Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)last_img read more

Read More
Tesla is launching a new retail offensive with a focus on malls

first_imgTesla is significantly expanding its retail presence this week with 11 new stores in the US and it’s focusing on locations inside malls with foot traffic. more…The post Tesla is launching a new retail offensive with a focus on malls appeared first on Electrek. Source: Charge Forwardlast_img

Read More
Researchers identify novel mutation in amyloid diseases

first_imgJun 26 2018Researchers have identified a one-of-a kind mutation in the DNA of a patient who died of transthyretin (TTR) amyloidosis, a progressive condition characterized by the buildup of abnormal deposits of a misfolded protein called amyloid in the body’s organs and tissues.The findings, published in the journal Proceedings of the National Academy of Sciences, may help identify much-needed new targets for treatment of this debilitating disease which can lead to organ failure and even death.Protein misfolding (when a protein structure does not assume its functional state) underlies a number of diseases including cystic fibrosis, Alzheimer’s disease, dementia and Parkinson’s disease among others. Amyloid formation by a misfolded protein causes some of these and other diseases, including TTR amyloidosis, a common form of systemic amyloid disease worldwide.According to John Berk, MD, associate clinical director of the Amyloid Treatment and Research Program at Boston University School of Medicine (BUSM) who treated the patient, the strategy of stabilizing the structure of a mutated protein to prevent its misfolding works for many patients with familial TTR amyloidosis. “Studying those that do not respond to treatment provides critical insights into the molecular basis of the disease and offers new strategies for better treatments.” The patient with this new TTR mutation did not respond to treatment. The researchers wanted to understand why the drug was ineffective.In order to determine how this new mutation in TTR affects the structural stability and misfolding of the protein and its interactions with the drug used to treat the disease, lead author Elena Klimtchuk, PhD, research scientist at BUSM, generated recombinant proteins that mimic normal transthyretin and its disease-causing variants. These proteins were then analyzed by Klimtchuk and colleagues using a battery of biophysical, biochemical and bioinformatics methods. The results showed that the mutation greatly destabilized the protein and enhanced amyloid formation, and that the drug failed to block this deleterious process.Related StoriesNew gene-editing protocol allows perfect mutation-effect matchingSchwann cells capable of generating protective myelin over nerves finds researchGene-editing could shorten life instead of prolonging, suggests new study”We were surprised to find that the mutation had little, if any, effect on the drug binding to its target protein, TTR. We suspect that a higher dose of this drug is unlikely to help patients with this gene mutation,” explained corresponding author Olga Gursky, PhD, professor of Physiology and Biophysics at BUSM.The researchers believe this study helps explain why the drug that is currently used to treat TTR amyloidosis has limited effect and does not work for all patients. “Our findings indicate that new drugs must target different sites on the protein to stabilize TTR and inhibit its deposition as amyloid,” added Gursky.This study impacts the treatment of TTR amyloidosis, a debilitating and deadly disease that affects approximately 40,000 worldwide, and has broader implications for understanding the molecular basis of other amyloid diseases caused by various proteins. “Increasing our understanding of the protein misfolding processes and how drugs intended to stabilize the particular protein succeed and fail provides insights into the design of more effective drugs.” Source:https://www.bmc.orglast_img read more

Read More